Dr. Lakshmi Narayan Mishra
My Social Links

Dr. Lakshmi Narayan Mishra

Assistant Professor
Vellore Institute of Technology University, India


Highest Degree
Ph.D. in Mathematics from National Institute of Technology, India

Share this Profile

Area of Interest:

Mathematics
100%
Nonlinear Analysis
62%
Integral Equations
90%
Fourier Analysis
75%
Quadrature Rules
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
0
Abstracts
0

Selected Publications

  1. Mishra, L.N., R.K. Yadav, 2020. A note on ordinary hypergeometric series and Bailey’s Transform. J. Fractional Calculus Applic., 11: 182-187.
  2. Tiwari, S.K. and L.N. Mishra, 2019. Some results on cone metric spaces introduced by Jungck multistep iterative scheme. Global J. Eng. Sci. Res., 6: 284-295.
    CrossRef  |  Direct Link  |  
  3. Suthar, D.L., S.D. Purohit, R.K. Parmar and L.N. Mishra, 2019. Integrals involving product of general class of polynomials and multiindex bessel function. Thai J. Math., .
    Direct Link  |  
  4. Pişcoran, L.I., L.N. Mishra and S. Uddin, 2019. A new class of Finsler-metrics and its geometry. Differ. Geom. Dyn. Syst., 21: 123-149.
    Direct Link  |  
  5. Page, M.H., L.N. Mishra, 2019. Weaker form of totally continuous functions, Open J. Math. Sci., 3 : 1-6.
    CrossRef  |  Direct Link  |  
  6. Mishra, S., L.N. Mishra, R.K. Mishra and S. Patnaik, 2019. Some applications of fractional calculus in technological development. J. Fractional Calculus Applic., 10: 228-235.
    Direct Link  |  
  7. Mishra, L.N., S. Pandey and V.N. Mishra, 2019. On a class of generalised (p, q) bernstein operators. Indian J. Ind. Applied Math., 10: 220-233.
    Direct Link  |  
  8. Mishra, L.N., B.R. Wadkar, 2019. Dislocated metric space with some fixed point theorems. Int. J. Scient. Innovative Math. Res., 7: 9-24.
  9. Mishra, L.N. and A. Kumar, 2019. Direct estimates for stancu variant of lupaş-durrmeyer operators based on polya distribution. Khayyam J. Math., 5: 51-64.
    CrossRef  |  Direct Link  |  
  10. Jena, B.B., L.N. Mishra, S.K. Paikray and U.K. Misra, 2019. Approximation of signals by general matrix summability with effects of Gibbs phenomenon. Bol. Soc. Paran. Mat., 38: 141-158.
    CrossRef  |  Direct Link  |  
  11. Hui, S.K., M. Atceken, T. Pal and L.N. Mishra, 2019. On Contact CR-submanifolds of $(LCS)-n$-Manifolds. Thai J. Math., .
    Direct Link  |  
  12. Dubey, R., L.N. Mishra, 2019. Nondifferentiable multiobjective higher-order duality relations for unified type dual models under type-I functions. Adv. Stud. Contemp. Math., 29: 373-382.
    CrossRef  |  
  13. Dubey, R., L.N. Mishra and R. Ali, 2019. Special class of second-order non-differentiable symmetric duality problems with (G,αf)-pseudobonvexity assumptions. Mathematics, 7: 763-778.
    CrossRef  |  Direct Link  |  
  14. Dubey, R., L.N. Mishra and C. Cesarano, 2019. Multiobjective fractional symmetric duality in mathematical programming with (C, Gf)-invexity assumptions. Axioms, Vol. 8., 10.3390/axioms8030097.
    CrossRef  |  Direct Link  |  
  15. Das, D., L.N. Mishra, 2019. Some fixed point results for JHR operator pairs in C*-algebra valued modular B-metric spaces via C*, class functions with applications. Adv. Stud. Contemp. Math. (Kyungshang)., 29: 383-400.
    CrossRef  |  
  16. Auwalu, A., E. Hinçal and N. Mishra, 2019. On some fixed point theorems for expansive mappings in dislocated cone metric spaces with Banach Algebras. J. Math. Applic., 42: 21-33.
    CrossRef  |  Direct Link  |  
  17. Assaye, B., M. Alamneh, L.N. Mishra, Y. Mebrat, 2019. Dual skew heyting almost distributive lattices. Applied Math. Nonlin. Sci., 4: 151-162.
    Direct Link  |  
  18. Vandana, Deepmala, N. Subramanian, L.N. Mishra, 2018. The cesaro χ2 of tensor products in orlicz sequence spaces. Int. J. Adv. Applied Math. Mech., 6: 33-42.
    Direct Link  |  
  19. Suthar, D.L., L.N. Mishra, A.M. Khan and A. Alaria, 2018. Fractional integrals for the product of Srivastava's polynomial and (p, q)-extended hypergeometric function. TWMS J. Applied Engg. Math. (In Press). .
  20. Sharma, N., L.N. Mishra and V.N. Mishra, 2018. Fixed point theorems for expansive type mappings in multiplicative metric spaces. Turk. J. Anal. Number Theory, 6: 52-56.
  21. Patir, B., N. Goswami and L.N. Mishra, 2018. Fixed point theorems in fuzzy metric spaces for mappings with some contractive type conditions. Korean J. Math., 26: 307-326.
    CrossRef  |  Direct Link  |  
  22. Mishra, V.N., P. Patel and L.N. Mishra, 2018. The integral type modification of Jain operators and its approximation properties. Numer. Funct. Anal. Optim., 39: 1265-1277.
    CrossRef  |  Direct Link  |  
  23. Mishra, L.N., P.K. Das, P. Samanta, M. Misra and U.K. Misra, 2018. On indexed absolute matrix summability of an infinite series. Applic. Applied Math., 13: 274-285.
  24. Mishra, L.N., P.K. Das, P. Samanta, M. Misra and U.K. Misra, 2018. On indexed absolute matrix summability of an infinite series. Applic. Applied Math. (In Press). .
  25. Mishra, L.N., K. Jyoti, A. Rani and Vandana, 2018. Fixed point theorems with digital contractions image processing. Nonlinear Sci. Lett. A, 9: 104-115.
    Direct Link  |  
  26. Mishra, L.N., A. Rani, M. Kumar, A. Rani and K. Jyoti, 2018. Some common fixed point theorems in JS-metric spaces. Nonlinear Sci. Lett. A, 9: 73-85.
    Direct Link  |  
  27. Mishra, L.N. and A. Gupta, 2018. An application of Perov type results in gauge spaces. Tbilisi Math. J., 11: 139-151.
    Direct Link  |  
  28. Maitra, J.K., S. Chaturvedi and L.N. Mishra, 2018. A note on fg-interior. Global J. Eng. Sci. Res., 5: 30-35.
    CrossRef  |  Direct Link  |  
  29. Jena, B.B., L.N. Mishra, S.K. Paikray and U.K. Misra, 2018. Approximation of signals by general matrix summability with effects of Gibbs Phenomenon. Bolet. Soc. Paranaense Matematica (In Press). .
  30. Dubey, R., L.N. Mishra and V.N. Mishra, 2018. Duality relations for a class of a multiobjective fractional programming problem involving support functions. Am. J. Operat. Res., 8: 294-311.
    CrossRef  |  Direct Link  |  
  31. Deepmala, Vandana, N. Subramanian and L.N. Mishra, 2018. The fibonacci numbers of asymptotically lacunary chi (2) over probabilistic p-metric spaces. TWMS J. Pure Applied Math., 9: 94-107.
  32. Choudhary, K., A.K. Jha, L.N. Mishra and M. Vandana, 2018. Buoyancy and chemical reaction effects on mhd free convective slip flow of newtonian and polar fluid through porousmedium in the presence of thermal radiation and ohmic heating with dufour effect. Facta Univ., Series: Math. Infor., 33: 1-29.
    CrossRef  |  Direct Link  |  
  33. Wadkar, B.R., R. Bhardwaj, L.N. Mishra and B. Singh, 2017. fixed point theorem in T0 Quasi metric space. Fluid Mech.: Open Access, Vol. 4. 10.4172/2476-2296.1000143.
    CrossRef  |  Direct Link  |  
  34. Wadkar, B.R., L.N. Mishra, R. Bhardwaj and B. Singh, 2017. Fixed point theorems in fuzzy 2-metric spaces. Int. J. Adv. Math., 4: 14-20.
  35. Wadkar, B.R., L.N. Mishra, R. Bhardwaj and B. Singh, 2017. Fixed point theorem in fuzzy 3-metric space. Adv. Dynam. Syst. Applic., 12: 123-134.
    Direct Link  |  
  36. Vandana, Deepmala, N. Subramanian and L.N. Mishra, 2017. Vector valued multiple of X2 over p-metric sequence spaces defined by Musielak. Caspian J. Math. Sci., 6: 87-98.
    CrossRef  |  Direct Link  |  
  37. Vandana, Deepmala, N. Subramanian and L.N. Mishra, 2017. The backward operator of double almost $\left(\lambda_{m}\mu_{n}\right)$ convergence in $\chi^{2}-$riesz space defined by a Musielak-Orlicz function. J. Ramanujan Soc. Math. Math. Sci., 6: 31-44.
    Direct Link  |  
  38. Vandana, Deepmala, N. Subramanian and L.N. Mishra, 2017. The Triple approximation of $P-$ metric space of $\chi^{3}-$ defined by Musielak Orlicz function. Nonlinear Sci. Lett., 8: 207-220.
  39. Vandana, Deepmala, N. Subramanian and L.N. Mishra, 2017. Riesz triple almost lacunary χ3 sequence spaces defined by a orlicz function-II. J. Generalized Lie Theor. Applic, Vol. 11. 10.4172/1736-4337.1000285.
    CrossRef  |  
  40. Vandana, D.N. and L.N. Mishra, 2017. The fibonacci numbers convergence of order α by Lacunary of X2 over p-metric spaces of Musielak. Int. Bull. Math. Res., 4: 23-34.
    Direct Link  |  
  41. Vandana, D., N. Subramanian and L.N. Mishra, 2017. The multi rough ideal convergence of difference strongly of X2 in p-metric spaces defined by orlicz. Model. Applic. Theor., 1 3.
    CrossRef  |  ASCI  |  
  42. Mishra, L.N., M. Sen and R.N. Mohapatra, 2017. On existence theorems for some generalized nonlinear functional-integral equations with applications. Filomat, 31: 2081-2091.
    Direct Link  |  
  43. Kumar, M., L.N. Mishra and S. Mishra, 2017. Common fixed theorems satisfying (CLRST) property in b-metric spaces. Adv. Dyn. Syst. Applic., 12: 135-147.
    Direct Link  |  
  44. Kumar, A. and L.N. Mishra, 2017. Approximation by modified Jain-Baskakov-Stancu operators. Tbilisi Math. J., 10: 185-199.
    CrossRef  |  Direct Link  |  
  45. Deshpande, B., A. Handa and L.N. Mishra, 2017. Common coupled fixed point theorem under weak ψ-φ contraction for hybrid pair of mappings with application. TWMS J. Applied Eng. Math., 4: 7-24.
    Direct Link  |  
  46. Deepmala, R., N. Subramanian, L.N. Mishra, 2017. Triple Ideal convergent ofχ over n p-metric spaces defined by Musielak-Orlicz functions. Math. Sci. Lett., 6: 169-175.
    Direct Link  |  
  47. Deepmala, N. Subramanian and L.N. Mishra, 2017. The Cesaro Lacunary Ideal bounded linear operator of X2- of ϕ-statistical vector valued defined by a bounded linear operator of interval numbers. Songklanakarin J. Sci. Technol., 39: 549-563.
    Direct Link  |  
  48. Deepmala, M. Jain, L.N. Mishra and V.N. Mishra, 2017. A note on the paper “Hu et al., common coupled fixed point theorems for weakly compatible mappings in fuzzy metric spaces, fixed point theory and applications 2013, 2013:220 Int. J. Adv. Appl. Math. Mech., 5: 51-52.
    Direct Link  |  
  49. Deepmala, L.N. Mishra and N. Subramanian, 2017. The double $\chi^{2}$ with two inner product defined by Musielak-Orlicz functions. Elect. J. Math. Anal. Appl., 5: 106-111.
  50. Chauhan, O.P., N. Singh, D. Singh and L.N. Mishra, 2017. Common fixed point theorems in cone metric spaces under general contractive conditions. Applied Math. Inform. Mech., 9: 133-149.
    Direct Link  |  
  51. Vandana, N.S. and L.N. Mishra, 2016. On rough I-core of triple sequence spaces by metric. Model. Applic. Theory, 2016: 27-36.
  52. Vandana, N. Subramanian, L.N. Mishra, 2016. On rough I-core of triple sequence spaces by metr. Model. Applic. Theory, 1: 28-35.
    Direct Link  |  
  53. Piscoran, L.I. and L.N. Mishra, 2016. Projective change for a new class of (α, β)-metrics. Math. Aeterna, 6: 885-894.
    Direct Link  |  
  54. Murthy, P.P., L.N. Mishra and U.D. Patel, 2016. Common fixed point theorems for generalized quadratic $ (\ψ_{1},\ψ_{2},\φ)$-weak contraction in complete metric spaces. Applied Math. Inform. Sci. Lett., 4: 127-135.
    Direct Link  |  
  55. Murthy, P.P., K. Tas, K. Rashmi and L.N. Mishra, 2016. Sub-compatible maps, weakly commuting maps and common fixed points in cone metric spaces. Applied Math. Inform. Mech., 8: 139-148.
    Direct Link  |  
  56. Mishra, V.N., P. Sharma and L.N. Mishra, 2016. On statistical approximation properties of q-Baskakov-Szasz-Stancu operators. J. Egypt. Math. Soc., 24: 396-401.
    CrossRef  |  Direct Link  |  
  57. Mishra, V.N., Deepmala, N. Subramanian and L.N. Mishra, 2016. The generalized semi normed difference of χ3 sequence spaces defined by orlicz function. J. Appl. Computat. Math., 10.4172/2168-9679.1000316.
    CrossRef  |  Direct Link  |  
  58. Mishra, L.N., R.P. Agarwal and M. Sen, 2016. Solvability and asymptotic behavior for some nonlinear quadratic integral equation involving Erdélyi-Kober fractional integrals on the unbounded interval. Prog. Fractional Differ. Applications, 2: 153-168.
    CrossRef  |  Direct Link  |  
  59. Mishra, L.N., H.M. Srivastava and M. Sen, 2016. Existence results for some nonlinear functional-integral equations in Banach algebra with applications. Int. J. Anal. Applic., 11: 1-10.
    Direct Link  |  
  60. Mishra, L.N., Deepmala and N. Subramanian, 2016. The generalized triple difference lacunary statistical on Γ3 over p-metric spaces defined by musielak orlicz function. J. Phys. Math., 10.4172/2090-0902.1000183.
    CrossRef  |  Direct Link  |  
  61. Mishra, L.N. and R.P. Agarwal, 2016. On existence theorems for some nonlinear functional-integral equations. Dynamic Syst. Applic., 25: 303-320.
  62. Mishra, L.N. and N. Subramanian, 2016. The new generalized difference of x2 over p-metric spaces defined by musielak orlicz function. J. Progressive Res. Math., 9: 1301-1311.
    Direct Link  |  
  63. Mishra, L.N. and M. Sen, 2016. On the concept of existence and local attractivity of solutions for some quadratic Volterra integral equation of fractional order. Applied Math. Comput., 285: 174-183.
    CrossRef  |  Direct Link  |  
  64. Gairola, A.R. and L.N. Mishra, 2016. On the q-derivatives of a certain linear positive operators. Iran. J. Sci. Technol. Trans. A: Sci., 42: 1409-1417.
    Direct Link  |  
  65. Gairola, A.R and L.N. Mishra, 2016. Rate of approximation by finite iterates of $$ q $$ q-durrmeyer operators. Proc. Nat. Acad. Sci., India Sect. A Phys. Sci., 86: 229-234.
    Direct Link  |  
  66. Deepmala, S.N. and L.N. Mishra, 2016. The new generalized difference sequence space X2 over p-metric spaces defined by musielak orlicz function associated with a sequence of multipliers. J. Applied Comput. Math., Vol. 5. 10.4172/2168-9679.1000331.
    CrossRef  |  Direct Link  |  
  67. Deepmala, R., L.N. Mishra, N. Subramanian, 2016. Characterization of some lacunary $\chi^{2}_{A_{uv}}-$ convergence of order $\alpha$ with $p-$ metric defined by $mn$ sequence of moduli Musielak. Applied. Math. Inf. Sci. Lett., 4: 119-126.
    CrossRef  |  Direct Link  |  
  68. Deepmala, N. and L.N. Mishra, 2016. The topological groups of triple almost lacunary χ3 sequence spaces defined by a orlicz function. Elect. J. Math. Anal. Appl., 4: 272-280.
  69. Deepmala, N. Subramanian and L.N. Mishra, 2016. The triple x of ideal fuzzy real numbers over p-metric spaces defined by musielak orlicz function. Southeast Asian Bull. Math., 40: 823-836.
    Direct Link  |  
  70. Deepmala, N. Subramanian and L.N. Mishra, 2016. The growth rate ofγ3defined by orlicz function. J. Approximation Theory Applied Math., 6: 1-13.
    Direct Link  |  
  71. Deepmala, N. Subramanian and L.N. Mishra, 2016. The double almost {\lambda_{m}\mu_{n}} convergence in \gamma^{2}-riesz space defined by a musielak-orlicz function. Asia Pac. J. Math., 3: 38-47.
  72. Deepmala, N. Subramanian and L.N. Mishra, 2016. Randomness of lacunary statistical acceleration convergence of $\chi^{2}$ over $p-$ metric spaces defined by Orlicz function. J. Math. Sci., 3: 57-72.
  73. Deepmala, N. Subramanian and L.N. Mishra, 2016. Generalized I of strongly lacunary of chi (2) over p-metric spaces defined by Musielak Orlicz function. Appl. Applied Math. Int. J., 11: 888-905.
  74. Subramanian, N. and L.N. Mishra, 2015. Riesz triple almost lacunary X3 sequence spaces defined by a Orlicz function. General Math., 23: 91-94.
    Direct Link  |  
  75. Murthy, P.P., L.N. Mishra and U.D. Patel, 2015. n-tupled fixed point theorems for weak-contraction in partially ordered complete G-metric spaces. New Tren. Math. Scie., 3: 50-75.
  76. Modh, A., M. Dabhi, L.N. Mishra and V.N. Mishra, 2015. Wireless network controlled robot using a website, android application or simple hand gestures. J. Comput. Networks, 3: 1-5.
  77. Mishrak, L.N., M. Sharma and V.N.M. Lakshmi, 2015. Manoj generalized Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar. Pure Applied Math., 4: 57-61.
  78. Mishra, L.N., S.K. Tiwari, V.N. Mishra and I.A. Khan, 2015. Unique fixed point theorems for generalized contractive mappings in partial metric spaces. J. Funct. Spaces, Vol. 2015. .
  79. Mishra, L.N., S.K. Tiwari and V.N. Mishra, 2015. Fixed point theorems for generalized weakly S-contractive mappings in partial metric spaces. J. Applied Anal. Comput., 5: 600-612.
    Direct Link  |  
  80. Mishra, L.N., 2015. Differential operators over modules and rings as a path to the generalized differential geometry. Facta Univ. Ser. Math. Inf., 30: 753-764.
  81. Deepmala, N. Subramanian and L.N. Mishra, 2015. Riesz triple almost lacunary x3 sequence spaces de ned by a orlicz function. Gen. Math., 23: 91-104.
    Direct Link  |  
  82. Deepmala and L.N. Mishra, 2015. Differential operators over modules and rings as a path to the generalized differential geometry. Facta Univ, Series: Math. Infor., 30: 1-12.
    Direct Link  |  
  83. Ali, M.F., M. Sharma, L.N. Mishra and V.N. Mishra, 2015. Dirichlet average of generalized miller-ross function and fractional derivative. Turk. J. Anal. Number Theory, 1: 30-32.
  84. Acar, T., L.N. Mishra and V.N. Mishra, 2015. Simultaneous approximation for generalized Srivastava-Gupta operators. J. Funct. Spaces, Vol. 2015. 10.1155/2015/936308.
    CrossRef  |  Direct Link  |  
  85. Mishra, V.N., K. Khatri, L.N. Mishra and Deepmala, 2014. Trigonometric approximation of periodic signals belonging to generalized weighted Lipschitz W′(Lr(t)), (r ≥ 1)-class by Norlund-Euler (N, pn)(E, q) operator of conjugate series of its Fourier series. J. Classical Anal., 5: 91-105.
    CrossRef  |  
  86. Mishra, V.N., K. Khatri and L.N. Mishra, 2014. Strong cesàro summability of triple fourier integrals. Fasc. Math, 53: 95-112.
    Direct Link  |  
  87. Mishra, V.N., K. Khatri and L.N. Mishra, 2014. Approximation of functions belonging to the generalized Lipschitz class by C1•Np summability method of conjugate series of Fourier series. Matematicki Vesnik, 66: 155-164.
    Direct Link  |  
  88. Mishra, V.N., H.H. Khan, I.A. Khan and L.N. Mishra, 2014. On the degree of approximation of signals of Lip(α, r), (r ≥ 1)-class by almost Riesz mans of its Fourier series. J. Classical Anal., 4: 79-87.
    CrossRef  |  Direct Link  |  
  89. Mishra, L.N., V.N. Mishra, K. Khatri and Deepmala, 2014. On the trigonometric approximation of signals belonging to generalized weighted Lipschitz W (Lr, ξ(t))(r ≥ 1)-class by matrix (C1•Np) operator of conjugate series of its Fourier series. Applied Math. Comput., 237: 252-263.
    CrossRef  |  Direct Link  |  
  90. Deepmala, L.N. Mishra and V.N. Mishra, 2014. Trigonometric approximation of signals (Functions) belonging to the $W (L_r, \xi(t)), (r \geq 1)-$ class by (E, q) (q > 0)-means of the conjugate series of its Fourier series. Global J. Math. Sci., 2: 61-69.
  91. Mishra, V.N., V. Sonavane and L.N. Mishra, 2013. On trigonometric approximation of W(Lp(t)) (p≥1) function by product (C,1) (E,1) means of its Fourier series. J. Inequalities Applic. 10.1186/1029-242X-2013-300.
    CrossRef  |  Direct Link  |  
  92. Mishra, V.N., V. Sonavane and L.N. Mishra, 2013. Lr-Approximation of signals (functions) belonging to weighted W(Lr(t))-class by C1•Np summability method of conjugate series of its Fourier series. J. Inequalities Applic. 10.1186/10.1186/1029-242X-2013-440.
    CrossRef  |  Direct Link  |  
  93. Mishra, V.N., K. Khatri, L.N. Mishra and Deepmala, 2013. Inverse result in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators. J. Inequalities Applic. 10.1186/1029-242X-2013-586.
    CrossRef  |  Direct Link  |  
  94. Mishra, V.N., K. Khatri and L.N. Mishra, 2013. Using linear operators to approximate signals of Lip(α, p), (p ≥ 1)-class. Filomat, 27: 353-363.
    CrossRef  |  Direct Link  |  
  95. Mishra, V.N., K. Khatri and L.N. Mishra, 2013. Statistical approximation by Kantorovich-type discrete q-Beta operators. Adv. Differ. Equat. 10.1186/10.1186/1687-1847-2013-345.
    CrossRef  |  Direct Link  |  
  96. Mishra, V.N., K. Khatri and L.N. Mishra, 2013. Some approximation properties of q-Baskakov-Beta-Stancu type operators. J. Calculus Variat. 10.1155/2013/814824.
    CrossRef  |  Direct Link  |  
  97. Mishra, V.N., H.H. Khan, K. Khatri, I.A. Khan and L.N. Mishra, 2013. Approximation of signals by product summability transform. Asian J. Math. Stat., 6: 12-22.
    CrossRef  |  Direct Link  |  
  98. Mishra, V.N., H.H. Khan, K. Khatri and L.N. Mishra, 2013. Hypergeometric representation for Baskakov-Durrmeyer-Stancu type operators. Bull. Math. Anal. Applic., 5: 18-26.
    Direct Link  |  
  99. Mishra, V.N., H.H. Khan, K. Khatri and L.N. Mishra, 2013. Degree of approximation of conjugate of signals (functions) belonging to the generalized weighted Lipschitz W(Lr(t)), (r ≥ 1)-class by (C, 1) (E, q) means of conjugate trigonometric Fourier series. Bull. Math. Anal. Applic., 5: 40-53.
    Direct Link  |  
  100. Mishra, V.N., H.H. Khan, I.A. Khan, K. Khatri and L.N. Mishra, 2013. Approximation of signals belonging to the Lip (ξ (t), p), (p>1)-class by (E,q) (q>0)-means, of the conjugate series of its Fourier series. Adv. Pure Math., 3: 353-358.
  101. Mishra, V.N., H.H. Khan, I.A. Khan and L.N. Mishra, 2013. Approximation of signals (functions) belonging to Lip(ξ(t), r)-class by C1•Np summability method of conjugate series of its Fourier series. Bull. Math. Anal. Applic., 5: 8-17.
    Direct Link  |  
  102. Mishra, L.N., V.N. Mishra and V. Sonavane, 2013. Trigonometric approximation of functions belonging to Lipschitz class by matrix (C1Np) operator of conjugate series of Fourier series. Adv. Difference Eq., Vol. 2013. 10.1186/1687-1847-2013-127.
    CrossRef  |  Direct Link  |  
  103. Mishra, L.N., R.P. Agarwal and M. Sen, 2013. Solvability and asymptotic behavior for some nonlinear quadratic integral equation involving Erdelyi-Kober fractional integrals on the unbounded interval. Progr. Fract. Different. Applic., 2: 153-168.
  104. Hu, X.Q., M.X. Zheng, B. Damjanovic and X.F. Shao, 2013. Common coupled fixed point theorems for weakly compatible mappings in fuzzy metric spaces. Fixed Point Theory Applic., Vol. 2013. 10.1186/1687-1812-2013-220.
    CrossRef  |  Direct Link  |  
  105. Mishra, V.N., K. Khatri and L.N. Mishra, 2012. Product summability transform of Conjugate series of Fourier series. Int. J. Math. Math. Sci., 10.1155/2012/298923.
    CrossRef  |  Direct Link  |  
  106. Mishra, V.N., K. Khatri and L.N. Mishra, 2012. Product (N, pn)(C, 1) summability of a sequence of Fourier coefficients. Math. Sci., Vol. 6. 10.1186/2251-7456-6-38.
    CrossRef  |  Direct Link  |  
  107. Mishra, V.N., K. Khatri and L.N. Mishra, 2012. On simultaneous approximation for Baskakov-Durrmeyer-Stancu type operators. J. Ultra Scientist Phys. Sci., 24: 567-577.
    Direct Link  |  
  108. Mishra, V.N., K. Khatri and L.N. Mishra, 2012. Approximation of functions belonging to Lip (ξ(t), r) class by (N, pn)(E, q) summability of conjugate series of Fourier series. J. Inequal. Applic., Vol. 2012. 10.1186/1029-242X-2012-296.
    CrossRef  |  Direct Link  |  
  109. Mishra, V.N., H.H. Khan, K. Khatri and L.N. Mishra, 2012. On approximation of conjugate of signals (functions) belonging to the generalized weighted W(Lr, ξ(t)), (r≥1)-class by product summability means of conjugate series of Fourier series. Int. J. Math. Anal., 6: 1703-1715.
    Direct Link  |  
  110. Mishra, V.N. and L.N. Mishra, 2012. Trigonometric approximation of signals (functions) in Lp-norm. Int. J. Contemp. Math. Sci., 7: 909-918.
    Direct Link  |  
  111. Mishra, V.N., K. Khatri, L.N. Mishra and S. Cesaro, 1963. Summability of triple fourier integrals. Fasciculi Math., 53: 95-115.